One-Step Synthesis of Biocompatible Nanohybrids

2022-07-23 01:02:34 By : Ms. Xia Zhang

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Graphene and boron nitride show great potential as fillers in polymer matrices and as photocatalysts because of their desirable chemical and physical properties. However, their widespread usage is limited because economic mass production remains a challenge.

Study: One-Step Green Production of Biocompatible Functionalized Few-Layer Graphene/Boron Nitride Nanosheet Hybrids Using Tannic Acid-Based Liquid-Phase Exfoliation. Image Credit: ktsdesign/Shutterstock.com

With this in mind, a new method of producing biocompatible nanohybrids made of boron nitride and tannic acid was published in the journal ACS Sustainable Chemistry & Engineering.

The highly desirable physical qualities of graphene, including its superior elastic modulus, high thermal conductivity and high surface area, make it a very suitable candidate for use in catalytic, medical, electrical, and biomedical applications. Potential areas of use range from nanohybrids and supercapacitors to wastewater management and treatment.

A hexagonal honeycomb-like lattice of very thin sheets of carbon atoms makes up a graphene few-layer film. Three processes: microwave treatment, nanodiamond conversion, and graphite arc discharge, are used to create few-layer graphene.

2D functionalized few-layer graphene (FFG) sheets with a C/O ratio of around two are formed when sp3 hybridized carbon atoms are joined in a 2D hexagonal sheet with an array of oxygen functionalities on both sides.

Hexagon-shaped boron nitride has intrigued material scientists due to its peculiar chemical properties. As boron nitride atoms are alternatively connected and arranged in a configuration where two atoms in adjoining layers are occluded on top of one another owing to polarity mismatch, it differs from graphite.

However, interest in boron nitride has increased because of its inert chemical nature, biocompatibility and high thermal properties.

Nanohybrids composed of boron nitride can significantly improve the mechanical properties of their host matrix. BNNs show elevated performance levels in terms of fracture strength, thermal conductivity, and thermal stability.

BNNs, therefore, hold the potential to be engineered with other nanohybrids, as a filler in polymer matrices to improve their performance.

Further use of these high-performance materials is restricted by their environmental sustainability as well as scalable production.

Green medicinal biomolecule tannic acid-based liquid-phase exfoliation was used in this work to try and develop a green technique for manufacturing FFG/BNN nanohybrids.

Tannic acid-assisted techniques for synthesizing nanomaterials can result in highly hydroxyl- and carboxyl-functionalized materials, which are crucial for real-world applications.

Tannic acid has not been used for direct exfoliation in the hybridization of 2D nanohybrids before now. In this research, it was employed as a green stabilizing and exfoliating agent.

The most suitable surface modifier for improved chemical and physical properties of nanoparticles and 2D nanohybrids is tannic acid, which is one of the most prevalent green compounds with high levels of pyrogallol-catechol groups. The FFG/BNN that was constructed displayed long-term dispersion stability.

The authors argued that this technique, being easily employable and having a high yield, can not only show applications of FFG/BNNs as standalone compounds but also can be used for improving the mechanical properties of nanohybrids by acting as a filler in the polymer matrices.

This research provides an important methodology for creating FFG/BNNs at a large scale and managed to achieve the highest yield of 57.3%. However, the possibility of tweaking the parameters such as raw material and nanohybrid ratio can be explored and exploited to achieve even higher yield and would provide more insight into the dynamics of two-dimensional materials.

If verified to be massively reproducible, this method could be utilized by research groups and industries to manufacture improved FFG/BNN hybrids while maintaining an eco-friendly approach.

Deshmukh, A. R., Chaturvedi, P. K., Lee, S.-Y., Park, W.-Y., & Kim, B. S. (2022). One-Step Green Production of Biocompatible Functionalized Few-Layer Graphene/Boron Nitride Nanosheet Hybrids Using Tannic Acid-Based Liquid-Phase Exfoliation. ACS Sustainable Chemistry & Energy. Available at: https://doi.org/10.1021/acssuschemeng.2c02484

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Shaheer is a graduate of Aerospace Engineering from the Institute of Space Technology, Islamabad. He has carried out research on a wide range of subjects including Aerospace Instruments and Sensors, Computational Dynamics, Aerospace Structures and Materials, Optimization Techniques, Robotics, and Clean Energy. He has been working as a freelance consultant in Aerospace Engineering for the past year. Technical Writing has always been a strong suit of Shaheer's. He has excelled at whatever he has attempted, from winning accolades on the international stage in match competitions to winning local writing competitions. Shaheer loves cars. From following Formula 1 and reading up on automotive journalism to racing in go-karts himself, his life revolves around cars. He is passionate about his sports and makes sure to always spare time for them. Squash, football, cricket, tennis, and racing are the hobbies he loves to spend his time in.

Please use one of the following formats to cite this article in your essay, paper or report:

Rehan, Shaheer. (2022, July 14). One-Step Synthesis of Biocompatible Nanohybrids With Tannic-Acid Based Liquid Exfoliation. AZoNano. Retrieved on July 22, 2022 from https://www.azonano.com/news.aspx?newsID=39408.

Rehan, Shaheer. "One-Step Synthesis of Biocompatible Nanohybrids With Tannic-Acid Based Liquid Exfoliation". AZoNano. 22 July 2022. <https://www.azonano.com/news.aspx?newsID=39408>.

Rehan, Shaheer. "One-Step Synthesis of Biocompatible Nanohybrids With Tannic-Acid Based Liquid Exfoliation". AZoNano. https://www.azonano.com/news.aspx?newsID=39408. (accessed July 22, 2022).

Rehan, Shaheer. 2022. One-Step Synthesis of Biocompatible Nanohybrids With Tannic-Acid Based Liquid Exfoliation. AZoNano, viewed 22 July 2022, https://www.azonano.com/news.aspx?newsID=39408.

Do you have a review, update or anything you would like to add to this news story?

We speak with researchers behind the latest advancement in graphene hBN research that could boost the development of next-generation electronic and quantum devices.

AZoNano speaks with Dr. Laurene Tetard from the University of Central Florida about her upcoming research into the development of nanotechnology that can detect animal-borne diseases. The hope is that such technology can be used to help rapidly control infected mosquito populations to protect public

AZoNano speaks with Dr. Amir Sheikhi from Pennsylvania State University about his research into creating a new group of nanomaterials designed to capture chemotherapy drugs before they impact healthy tissue, amending a fault traditionally associated with conventional nanoparticles.

The Filmetrics R54 advanced sheet resistance mapping tool for semiconductor and compound semiconductor wafers.

This product profile describes the latest nano-particle analyzer "thesis particle size analyzer" and its key features.

The Filmetrics F40 turns your benchtop microscope into an instrument for measuring thickness and refractive index.

AZoNano.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022