Click here to sign in with or
by National Research Council of Science & Technology
A flame-retardant carbon-fiber-reinforced composite material has been developed. Korea Institute of Science and Technology (KIST) announced that a research team from its Institute of Advanced Composite Materials, headed by Dr. Yong chae Jung used plant-originated tannic acid to develop a flame-retardant carbon fiber-reinforced plastic (CFRP), and also presented a method for its eco-friendly recycling.
CFRP, a composite material that contains carbon fiber, which is about four times lighter than steel yet 10 times stronger, is widely used in the aerospace, automotive, shipbuilding, and sports equipment industries. Structurally, CFRP is made up of carbon fiber and epoxy resin, which serve functions in this composite material similar to the respective roles that reinforcing rods and cement play in concrete structures. To achieve mechanical rigidity, the binding of carbon fiber and epoxy resin in CFRP must be strong. Moreover, CFRP must be fire-safe, as it is used for purposes closely related to everyday life, e.g., use as a construction material. To induce these traits in CFRP, sometimes it is synthesized with additives.
Due to its susceptibility to heat, CFRP had been made fire-safe by adding a halogen flame-retardant. However, the use of halogen in CFRP was banned worldwide, because it generates toxic substances when incinerated for recycling. As such, the task at hand was to make CFRP flame-retardant with the use of a non-toxic, safe material.
Jung Yong-chae, head researcher at KIST's Institute of Advanced Composite Materials, sought to improve the mechanical rigidity and flame-retardance of CFRP with tannic acid, an eco-friendly substance. Tannic acid characteristically bonds strongly with carbon fiber. It also turns into charcoal when burned. Charred tannic acid functions as a barrier that blocks the inflow of external oxygen. By manufacturing epoxy resin from tannic acid and mixing it into carbon fiber, the KIST research team successfully developed a CFRP that is strong and flame-retardant.
Unlike conventional epoxy resin that is vulnerable to heat, epoxy resin made from tannic acid is flame-retardant and needs no additives. This means that the toxic substances generated when incinerating CFRP for recycling would no longer be a problem. Also, because conventional CFRP when burned decreased the performance of its epoxy resin, precluding complete recycling, the research team came up with a new recycling method.
By dissolving CFRP in water in a supercritical fluid state—i.e., temperature and pressure over a set level—over 99% of the CFRP could be recovered without reduced carbon fiber performance. It was also found that epoxy resin when dissolved produced a substance called "carbon dots," which can be used as an electronic material (Optronics, Sensing, Bioimaging etc.). Unlike the method of recycling by incineration, which burns up epoxy resin leaving only the incomplete carbon fiber to be recycled, this new method of recycling enables the recycling of all components of a composite material.
Head researcher Dr. Jung said, "We have created a composite material with an expanded range of application that is a dramatic improvement over conventional carbon fiber-reinforced plastic in terms of flame-retardancy, mechanical rigidity, and recyclability. These improved traits are significant in that they determine the range of application of said composite material." He added, "We will be reviewing the structure of this composite material to achieve even further improved properties and to further expand the range of its application." Explore further Achieving strong structures with carbon fiber reinforced plastics More information: Young-O Kim et al, Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic, Composites Part B: Engineering (2020). DOI: 10.1016/j.compositesb.2020.108173 Provided by National Research Council of Science & Technology Citation: Team develops eco-friendly, flame-retardant carbon plastic ideal for recycling (2020, June 24) retrieved 16 September 2022 from https://phys.org/news/2020-06-team-eco-friendly-flame-retardant-carbon-plastic.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.